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Abstract 

Mirror planes and rotation axes lead to rarity of  space 
groups for organic structures. Their inhibi t ing effect 
is mitigated by the s imultaneous presence of  glide 
planes or screw axes or both. To a first approximat ion  
the number  of  structures in each space group of  a 
given crystal class is given by 

Nsg = A~c exp ( -Bcc[2]sg-C~[m]sg) ,  

where [2]sg is the number  of  twofold axes and [m]sg 
is the number  of  reflexion planes in the cell, Bee and 
C¢~ are parameters  characteristic of  the crystal class 
in question, and A~ is a normal iz ing factor, propor- 
tional to the total number  of  structures in the crystal 
class. If  the cell is centred, it will contain twice or 
four times as many  symmetry  elements as a primitive 
cell in the same crystal class, but for a given asym- 
metric unit  it will have (approximately)  twice or four 
times the volume, so that the density of  symmetry 
elements is (approximately)  the same. Centred cells 
thus fall approximate ly  into line with primitive cells 
if  the actual numbers  of  symmetry elements are 
divided by two or four to give the number  in a 
'volume-equivalent '  cell. In the first approx imat ion  
no separate provision is needed for [21 ]~g and [g]sg 
or other glides, since ([2]sg+[21]~g) and ([m]sg+ 
[g]sg) are constants for the volume-equivalent  cell 
within each crystal class in these systems. In a second 
approximat ion  coincidences of axes and planes and 
a residual effect of  centring can be al lowed for, and 
the representat ion becomes quantitative (R E<- 0"01 
for 2, m, 2/m, 222, and <-0.04 for mm2, mmm). 

I. Introduction 

It is well known that organic compounds  crystallize 
typically in the space groups that permit  close packing 
of t r iaxia l  el l ipsoids (Kitajgorodskij ,  1955), especially 
P1 and P21/c, which between them account for about  
ha l f  the entries in the Cambr idge  Structural Database  
(Allen et al., 1979). At the other end of  the scale, 
there are some space groups that contain no entries, 
and others that contain only a very few. 
Kitajgorodskij 's  observations may be thought to have 
something to do with the sociology of science rather 
than with nature. Crystal lographers  choose the struc- 
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tures to be determined,  and may prefer to work in 
P21/c rather than in F23.* A pre l iminary  survey 
(Wilson, 1987a) t  of  the substances (54 599 in January  
1987) with assigned space groups in the Cambr idge  
Structural Database  - which aims to include all deter- 
minat ions  of  space groups of organic materials,  
broadly defined but s topping short of  proteins etc. - 
showed that there were no examples  for about  16 
space groups, and that many  more had only one or 
two examples  each. Individual  examinat ion  of  these 
examples  showed that many  of  them were disordered,  
others were strongly ionic, and for some the space 
group was dubious.  For the present work a second 
search was made,  accepting only space groups satisfy- 
ing three criteria: (i) a full structure determinat ion 
had been carded  out, so that the space group was 
confirmed and unambiguous ;  (ii) there was no men- 
tion of  disorder;  and (iii) there was no ment ions  of  
ionic bonding.  This reduced sample (34 730 sub- 
stances) can be regarded as consisting pr imar i ly  of  
typical molecular  organic materials.  The number  of  
space groups with no examples  increased to about  
75 in the restricted set. The relative frequencies are 
similar  to those reported by Mighell ,  Himes & 
Rodgers (1983), but  the sample  is drawn from a larger 
database and in accordance with strict selection rules. 

Mackay (1967) and others have investigated 
various statistical properties of  the distr ibution of  
space groups, but it is thought  that this is the first 
at tempt to ' expla in '  the distr ibution quantitatively.  

* Such an effect was undoubtedly important a generation ago, 
before powerful computer programs became readily available. 
Even now, someone who looked at my poster in Perth argued, 
apparently seriously, that centrosymmetric structures were not 
'really"commoner than non-centrosymmetric; it was simply that 
crystallographers did not proceed with determination of the struc- 
tures of the latter. It is unlikely that the present sample is greatly 
affected, as most of the structures of the set of 34 730 are post-1960. 

t The material for the Perth poster has not been published and 
there is no point in doing so, as it is superseded by the present 
series of papers. Everything essential is incorporated here, by direct 
quotation or in paraphrase. 

~t Unfortunately, 'mention' must be taken literally. A few cases 
were found in which metal salts of simple organic acids (acetates, 
oxalates,...) had not been flagged as ionic. It seems that the 
number of such cases in the crystal classes treated in this paper 
was small enough to be neglected. 
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2. Partition of structures within crystal classes 

2.1. The triclinic crystal classes 

This paper is primarily concerned with the partition 
of the restricted set of structures between the space 
groups within each of the crystal classes of the mono- 
clinic and orthorhombic systems. The triclinic crystal 
classes 1 and T have only one member each, so there 
is not much to be said about them, except that P1 
(no. 2) comes second in overall space-group popular- 
ity (see, however, Donohue, 1985). The hexagonal 
crystal class 6 is the only other example of a crystal 
class containing only one space group. 

2.2. Partition of  structures within monoclinic and 
orthorhombic crystal classes 

The symmetry elements typical of the monoclinic 
and orthorhombic systems are inversion centres, two- 
fold axes, twofold screw axes, reflexion planes, and 
glide planes. Twofold axes and reflexion planes, when 
present in a space group, can be regarded as forming 
a rigid scaffolding that interferes with the attempt by 
the molecules to arrange themselves comfortably, 
whereas screw axes and the glide planes, when pres- 
ent, ensure that some accommodation is possible by 
shifting molecules away from each other by a sub- 
multiple of a lattice translation. In the poster 
exhibited at the Fourteenth International Congress 
of Crystallography in Perth (Wilson, 1987a) I 
attempted to parallel these effects by assigning a 
positive or negative score to each symmetry element, 
depending on whether or not it interfered with pack- 
ing. The scheme, which was entirely arbitrary or intui- 
tive, is given in Table 1. The score for the space group 
was simply the sum of the scores for the individual 
symmetry elements, and in most crystal classes the 
score did in fact parallel fairly closely the actual 
popularity of the corresponding space group. In the 
space groups of high symmetry there were difficulties 
in enumerating the symmetry elements and difficulties 
because of disorder and/or  ionic bonding. The Perth 
poster ended with the following paragraph: 

' Can the scoring system be improved ? Several poss- 
ible improvements in the scoring system suggest them- 
selves. There is some indication that axes should be 
given more weight than planes. Inhibiting symmetry 
elements might be given weight different from the 
positive weight given to facilitating elements. Some 
space groups have a very large number of symmetry 
elements but a small resultant score; possibly 'density 
of symmetry elements' should be scored. The dividing 
factors for centred cells might be adjusted up or down 
from the simple integers 2 and 4. The present scheme 
relates only to order of popularity within a crystal 
class; can anything be done about the order of popu- 
larity of crystal classes? The concept of 'symmetry 

Table 1. The scoring system used for the Perth poster 

Symmetry  element Score 

2, m, 3,4,6 -1 
a,b,c,n,d +1 
21,31,32,41,43,6t, 65 +1 
Other axes 0 
A, C, I Divide by 2 
F Divide by 4 

element' may need clarification - see the paper by 
de Wolff (1987).' 

The points of progress in the present paper are as 
follows: 

(1) It has been realized that the paragraph headed 
Symmetry operations in the space-group entries in 
Volume A of International Tables for Crystallography 
(Hahn, 1987) may give some symmetry operations 
not drawn as symmetry elements in the figure, and 
vice versa. Comparison of the two representations 
helps to reduce the difficulty of enumeration men- 
tioned above, and further help is given by the 
introductory discussion on pp. 55-68 of International 
Tables. 

(2) It has been realized that the divisors for centred 
cells are equivalent to utilizing only the symmetry 
elements present in a volume-equivalent cell. The 
numbers of symmetry elements in a centred cell are 
twice or four times the number in a primitive cell in 
the same crystal class, but for a given asymmetric 
unit the volume of the cell will be (at least approxi- 
mately) twice or four times as great. The comparable 
volume density of symmetry elements would thus be 
obtained by dividing the actual numbers of two or 
four, giving the number of 'symmetry elements in the 
volume-equivalent cell'. When this is done in the 
systems discussed here, the number of screw axes 
becomes linearly dependent on the number of simple 
twofold axes, and need not be treated separately in 
a first approximation. Similarly, the number of glide 
planes is linearly dependent on the number of 
reflexion planes. 

(3) It has been realized that questions like the 
relative inhibiting effects of axes and planes, and 
whether it is preferable to work with the centred cell 
or the volume-equivalent cell can be studied by 
the methods of non-parametric correlation and 
regression often used in the social sciences (Wilson, 
1987b). 

No progress has been made on the other questions 
raised in the poster. In particular, there has been no 
progress in modelling the partition of structures 
between crystal classes - the only obvious comments 
are that centrosymmetric crystal classes are more 
popular than non-centrosymmetric, and that crystal 
classes of high symmetry are less popular than those 
of low. 
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3. N o n - p a r a m e t r i c  c o r r e l a t i o n  

Non-parametric correlation is a comparatively 
assumption-free method of seeking significant rela- 
tions between variables. The variables need not be 
numerical in themselves; for example, the presence 
of a body-centred cell can be represented by 1 and 
its absence by 0. Programs for the rapid calculation 
of correlation coefficients are included in many statis- 
tical 'packages', such as SPSS-X or GENSTAT.  As 
well as actual values of the correlation coefficients, 
the programs indicate the 'statistical significance' of 
the value: the probability that the value could have 
arisen by chance. Probabilities of less than 0.05 (5%) 
are usually regarded as significant; those less than 
0.005 as highly so. For any given value of a correlation 
coefficient, the significance - in other words the 
degree of credibility of any deductions from the data 
- increases with the number of examples on which 
the correlation is based. In the present problem the 
relevant number of examples is the number of space 
groups in the crystal class and not, as one might at 
first expect, the number of structures in the space 
groups. The numbers of space groups in the crystal 
classes 2, m, 2/m, 222, mm2 and mmm are 3, 4, 6, 9, 
22 and 28 respectively, so that the crystal classes in 
which it is worthwhile to study correlations are the 
populous ram2 and mmm. 

3.1. The crystal class ram2 

Table 2(a) gives, for the crystal class ram2, three 
sets of non-parametric* correlations between the 
number of structures found for each space group and 
three groups of variables thought likely to be impor- 
tant. The first is the type of cell (P, C, / ,  F); it will 
be seen that no correlation reaches a level significant 
in the statistical sense. The coefficient for F, however, 
is rather large, and the regression analysis in § 5.2 
below indicates that F cells are significantly more 
popular than those of other types in this crystal class. 
The second is the correlation of the number of struc- 
tures with the numbers of symmetry elements present 
in the conventional cell, and the third is the correla- 
tion with the numbers of symmetry elements present 
in the volume-equivalent cell. The correlations with 
the numbers of each type of symmetry element in the 
conventional cell are higher than with the type of 
cell; three of the four are 'significant', and the fourth 
just misses 'significance'. The correlations with the 
numbers of symmetry elements in the volume- 
equivalent cell are much higher for twofold axes, 
screw axes and glide planes, and only marginally 
reduced for reflexion planes; one is therefore 

*Two types of non-parametric correlation coefficients are 
in common use, named after the statisticians M. G. Kendall and 
C. Spearman. The Spearman coefficients have some advantages, 
and are used here. 

Table 2. Non-parametric (Spearman) correlation 
coefficients between numbers of structures and sym- 

metry elements 

For each correlation the upper figure is the correlation coefficient, 
the lower its statistical significance. 

(a) Space groups in the crystal class ram2 

1. Correlations of numbers of structures with type of cell 

P C I F 

0.0578 -0.1158 -0.0943 0.2001 
0.399 0-304 0.338 0.186 

2. Correlations of numbers of structures with numbers of symmetry 
elements in the conventional cell 

Diads Screws Mirrors Glides 

-0.4435 0.5500 -0.5820 0.3488 
0-019 0.004 0-002 0-056 

3. Correlations of  numbers of structures with numbers of symmetry 
elements in the volume-equivalent cell 

Diads Screws Mirrors Glides 

-0-662 0.6622 -0.5599 0-5599 
0.000 0.000 0-003 0.003 

(b) Space groups in the crystal class m m m  

1. Correlations of numbers of structures with type of cell 

P 

0.1929 
0.163 

2. Correlations 
elements in the 

Diads 

-0.6590 
0.000 

3. Correlations 
elements in the 

C I F 

-0.0649 -0-1459 0.0690 
0"371 0"229 0"364 

of numbers of structures with numbers of symmetry 
conventional cell 

Screws Mirrors Glides 

0.3922 -0.5088 0.3489 
0.030 0-002 0.034 

of numbers of structures with numbers of symmetry 
volume-equivalent cell 

Diads Screws Mirrors Glides 

-0-7610 0.7610 -0.4491 0.4491 
0-000 0.000 0-008 0.008 

encouraged to work with the volume-equivalent cell. 
As already noted, for the volume-equivalent cell the 
number of screw axes is linearly dependent on the 
number of simple twofold axes; this is reflected in 
Table 2(a) by the equal and opposite values of the 
correlation coefficients. Similar remarks apply to the 
number of reflexion planes and glide planes. 

3.2. The crystal class mmm 

Similar data for the crystal class mmm are given 
in Table 2(b). Again, the correlations with type of 
cell (P, C, I, F) are not statistically significant, and 
correlations with symmetry elements in the volume- 
equivalent cell are rather better than those with sym- 
metry elements in the conventional cell. Although not 
statistically significant, the coefficient for P is rather 
large, and the regression analysis in § 5.2 below indi- 
cates the P cells are significantly more popular than 
centred cells in this crystal class (and in 222). 
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4. The first approximation 

On the basis of Table 2, therefore, one is encouraged 
to proceed with a model based on the numbers of 
simple twofold axes and of reflexion planes in the 
volume-equivalent cell. It was noted in Perth that the 
numbers of structures in the space groups were (in 
very rough order of magnitude) proportional to 
exp(score), so the simple equation 

N~g=Accexp(-B~c[2]~g-Cce[m]sg) (1) 

was thought worth trying; N~g is the number of struc- 
tures reported for the space group in question, [2]sg 
is the number of twofold axes and [ m ]~g is the number 
of reflexion planes in the volume-equivalent cell, B~c 
and C~ are parameters characteristic of the crystal 
class in question, and A~ is a normalizing factor, 
proportional to the total number of structures in the 
crystal class. The program package SPSS-X gives a 
'user-friendly' program for evaluating the coefficients 
in a linear regression by the method of least squares; 
weights may be included if desired. Equation (1) can 
be linearized by taking the natural logarithm of both 
sides: 

lnN~g=lnA~¢-B¢c[2]sg-C~¢[m]sg, (2) 

and this equation and the SPSS-X program were used 
in the first attempts at analysis. The space groups with 
N~g = 0 presented problems, both because of the nega- 
tively infinite logarithm and the difficulty of assigning 
weights. These could be overcome by a series of 
ad-hoc assumptions, but it was then realized that the 
maximum-likelihood methods in the program pack- 
age GLIM (Baker & Nelder, 1978) were better suited 
to the problem. 

A second approximation, involving more aspects 
of the space-group symmetry, is developed in § 5.1 
below. 

4.1. The functional form of the sampling fluctuations 

If the structures found for each space group could 
be regarded as a random sample from a very large 
number of structures, then N~g would have a Poisson 
distribution. It may be argued that the number of 
structures is not 'very large', and that therefore the 
Poisson distribution is not appropriate. To take a 
specific example, the crystal class mmm in the present 
sample contains N~c = 2826 structures, of which Nsg = 
129 belong to space group no. 56 (Pccn). Should Nsg 
for this space group be regarded as a Poisson- 
distributed variable with parameter approximately 
129, or as a binomially distributed variable with p 
approximately 129/2826? Most estimates were in fact 
done in duplicate, once for a Poisson distribution 

and once for a binomial.* The results, both for the 
coefficients of the symmetry elements and for the 
calculated values of Nsg, differed only minimally. 
However, the program-estimated standard deviations 
of the parameters and the values of the residual R2 
[(3)] were in every case slightly lower for the binomial 
distribution, and only the values obtained with the 
binomial distribution are reported here. 

GLIM allows the user to specify the variance of 
the distribution to be used in the maximum-likelihood 
fitting, but provides default values if none are 
specified. The default values are based on the calcu- 
lated, not the observed, values of Nsg , they a r e  Nsg 

for the Poisson and Nsg (1 - Nsg / Ncc ) for the binomial 
distribution, where Nee is the observed number of 
examples of the crystal class in question. The default 
values were used in this work, but some possibly 
preferable variants are discussed in the Appendix. 

4.2. Sources of bias 

Two sources of possible bias should be mentioned. 
It will be remembered that the process of selection 
of the sample involved discarding all substances for 
which the crystallographer had assigned a space 
group, but did not proceed to a structure determina- 
tion. One might thus expect that the differences in 
numbers between 'nice' and 'difficult' space groups 
would be somewhat exaggerated. 

The second possibility is that the distribution is 
seriously affected by molecular symmetry. Some 
molecules possess inherent symmetry (centre, twofold 
axis, reflexion p l ane , . . .  ), and this symmetry could 
coincide with the corresponding crystallographic 
symmetry element, again increasing the variance 
and/or  bias of the number of examples per space 
group. This effect undoubtedly occurs, but it does not 
appear to be large in comparison with other sources 
of variance and/or  bias. In the course of this work it 
was necessary to consult a hundred or so original 
papers in addition to searching the Structural 
Database, and only one example was noted - 
6b, 10b- dihydrobenzo[j]cyclobut[a]acenaphthylene 
(C~8H12). The molecule has a butterfly shape with a 
reflexion plane, which is utilized in the crystal struc- 
ture. It forms, in fact, the only recorded occurrence 
of the space group Pm (Hazell & Hazell, 1977). The 
comparative rarity of utilization of molecular sym- 
metry suggests that it can be ignored in an exploratory 

* It might be argued further, and very plausibly, that Nsg should 
be considered as a multinomial variable, with probabilities 
approximately 0/2826, 2/2826, 0/2826, 1/2826, . . . ,  for the space 
groups 47, 48, 49, 50, . . . .  However, it appears that GLIM uses 
only the means and variances of the probability distributions 
(Baker & Nelder, 1978, § 18.1.1), and thus it would not distinguish 
between binomial and multinomial distributions of the sampling 
fluctuations of Nsg. I have not found a program designed for 
multinomial distributions. 
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statistical survey, and the good agreement obtained 
between the observed and calculated values of Nsg 
seems to indicate that neither crystallographer bias 
nor molecular symmetry is an important disturbing 
factor. 

Donohue (1985) has pointed out that, in the crystal 
classes not containing a plane of symmetry or an 
inversion axis, determination of the space group of 
a D isomer automatically establishes the space group 
of the L isomer and vice versa. If this is accepted as 
an appropriate correction to the actual counts, the 
frequencies reported here for the space groups in 
the crystal classes 1, 2 and 222 should be doubled. 
The doubling, however, should be done after the 
model is fitted. To double first would, in effect, give 
double statistical weight to structures in these space 
groups and thus produce incorrectly low estimates of 
the standard deviations of the parameters. 

4.3. Values of  the coefficients 

GLIM has a program specially designed to deal 
with maximum-likelihood fitting of models of the type 
of (1) to Poisson variables, and with a 'user-defined 
model' GLIM can treat (1) for binomial variables 
also. The difficulties in SPSS-X about In(0) and of 
assigning weights thus do not arise; if there are any 
they are decently hidden from the user. As yet, there 
is no interpretation to be attached to the numerical 
values of the coefficients B~ and C~c, but as a matter 
of interest those found for the six crystal classes are 
given in Table 3, together with the estimated standard 
deviations produced by the program. (Only the sig- 
nificant digits are reproduced in Tables 3 and 5; more 
decimal places are used by the program for the calcu- 
lated values in Tables 4 and 6.) It will be seen that 
the effects of twofold axes and of mirror planes are 
of the same order of magnitude. There is a tendency 
for the numerical value of the coefficients to decline 
with increasing complexity of the point group. 

4.4. Comparison of  observed and calculated frequencies 

Table 4 gives the data, in order of space-group 
number, for all space groups in the triclinic, mono- 
clinic and orthorhombic crystal systems. The arbitrary 
parameters Bcc and Cc¢ were evaluated separately for 
each monoclinic and orthorhombic crystal class, as 
indicated in Table 3, and the number of structures 
expected for each space group was calculated from 
(1). In general the numbers observed and the numbers 
expected go up and down together in a semi-quantita- 
tive way; in view of the simplicity of the model the 
agreement can be regarded as reasonably satisfactory. 

Choice of a measure of goodness of fit presents a 
problem. The natural ones would be X 2 or the scaled 
deviance (both are evaluated by the program), but 
their values are unreliable because of the space groups 
for which the calculated value of Nsg is zero to two 

Table 3. Coefficients Bcc and Ccc (§ 4.2) in regressions 
of  Nsg in the crystal classes of  the monoclinic and 
orthorhombic systems (estimated standard deviations 

in parentheses) 

Only twofo ld  axes and  reflexion planes  are used in this first 
app rox ima t ion ;  for  the second  app rox ima t ion  see Tab le  5. 

Crystal  class Coefficient  Coefficient  

Bcc c~ 
2 -4.66 (0.10) - 
m - -5.17 (0.44) 
2/m -3.89 (0.03) -4.50 (0.07) 
222 -3.97 (0.06) - 
turn2 -4.10 (0-11) -3.60 (0.14) 
m m m  -2.50 (0.03) -1.30 (0-04) 

or more decimal places. It was decided to use the 
conventional (unweighted) crystallographic residual 
R2, given by 

g 2= ~ (obs . -  calc.)2/~ (obs.) 2. (3) 

The values are shown, together with the number of 
'degrees of freedom', at the end of each crystal-class 
entry. The agreement is in the usual crystallographic 
range for 2, 2/m and 222, but is unsatisfactory for 
m, ram2 and mmm. A second approximation was 
therefore sought. 

5. The second approximation 

Examination of Table 4 showed that high values of 
R2 arose mainly from a few highly discrepant space 
groups. In some cases the reason for a discrepancy 
was obvious. For example, in space group no. 33 
(Pna21) the screw axis is unencumbered, and can 
exert its expected effect, whereas in space group no. 
29 (Pca21) it lies on the intersection of two glide 
planes, and may well have a quite different effect. 
This suggests that distinguishing between free and 
encumbered axes would be a first step towards an 
improved model, and this indeed proved to be so. 
The large discrepancies for the two space groups just 
mentioned disappeared, and there was general 
improvement throughout the class ram2 and a smaller 
improvement in mmm; the values of RE fell from 0.38 
to 0.05 and from 0.13 to 0.11 respectively. Distinction 
between free and encumbered axes does nothing to 
reduce the discrepancy in the crystal classes m and 
2/m; the next plausible refinement for these classes 
is to distinguish between primitive and centred cells. 

5.1. ' Cell' as a factor 

It is reasonable, at least until proved otherwise, to 
treat number of planes or number of axes as ordinary 
variables, and expect their effects to be, at least 
approximately, proportional to the number present. 
Type of cell, on the other hand, is a qualitative rather 
than a quantitative concept, and cannot plausibly be 
treated as a numerical variable. Fortunately GLIM 
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Table 4. 
systems 

The  ca l cu l a t ed  n u m b e r s  are b a s e d  on  the first a p p r o x i m a t i o n  (on ly  axes a n d  p l a n e s  cons ide red ) .  

Number of structures attributed to each space group in the triclinic, monoclinic and orthorhombic crystal 

N u m b e r  of  s t ruc tu res  Space  g r o u p  
N u m b e r  of  N u m b e r  o f  

no.  s y m b o l  d iads  mi r ro rs  obse rved  ca l cu l a t ed  

Crystal class 1 
1 P 1  - - 345 - 

Crystal class T 
2 P i  - - 5544 - 

Crystal class 2 
3 P2 1 0 2 21 
4 P21 0 0 2277 2279 
5 C2 0.5 0 255 221 

Crystal class m 
6 Pm 0 1 1 1 
7 Pc 0 0 122 208 
8 Cm 0 0.5 16 15 
9 Cc 0 0 294 208 

Crystal class 2 /m 
10 P2 /m 1 1 0 3 
11 P21/m 0 1 198 150 
12 C 2 / m  0.5 0.5 114 203 
13 P2/c  1 0 124 271 
14 P21/c 0 0 13 518 13 552 
15 C2/c  0.5 0 2291 1934 

Crystal class 222 
16 P222 3 0 3 0 
17 P2221 2 0 1 1 
18 P21212 1 0 136 78 
19 P2t2t2I 0 0 4128 4128 
20 C2221 1 0 57 78 
21 C222 2 0 1 1 
22 F222 1.5 0 0 11 
23 I222 1.5 0 2 11 
24 1212121 1.5 0 1 11 

Crystal class ram2 
25 Prom2 1 2 0 0 
26 Pmc21 0 1 16 12 
27 Pcc2 1 0 1 7 
28 Pma2 1 I 0 0 
29 Pca21 0 0 270 449 
30 Pnc2 1 0 3 7 
31 Pmn21 0 1 27 12 
32 Pba2 1 0 10 7 
33 Pna21 0 0 620 449 
34 Pnn2 1 0 13 7 
35 Cmm2 1 1 0 0 
36 Cmc2 0 0-5 61 74 
37 Ccc2 1 0 4 7 
38 C2mm 0.5 1 0 2 
39 C2mb 0.5 0.5 4 10 
40 C2cm 0-5 0-5 8 10 
41 C2cb 0.5 0 38 58 
42 From2 0.5 0.5 5 10 
43 Fdd2 0-5 0 131 58 
44 lmm2 0.5 1 1 2 
45 Iba2 0.5 0 36 58 
46 Ima2 0.5 0.5 3 10 

Crystal class mmm 
47 Pmmm 3 3 0 0 
48 Pnnn 3 0 2 1 
49 Pccm 3 1 0 0 
50 Pban 3 0 1 1 
51 Pmma 2 2 0 1 
52 Pnna 2 0 21 11 
53 Pinna 2 1 5 3 
54 Pcca 2 0 9 11 
55 Pbam 1 1 7 37 
56 Pccn 1 0 129 135 
57 Pbcm 1 1 40 37 
58 Pnnm 1 1 18 37 
59 Pmmn 1 2 7 10 
60 Pbcn 1 0 332 135 

R 2 = 0.017 
D F =  1 

R 2 = 0.382 
D F =  2 

R 2 = 0.029 
D F = 3  

R 2 = 0-016 
D F = 7  

R 2 = 0.376 
D F =  19 
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Space  g r o u p  

Table 4 (cont.) 
N u m b e r  o f  s t ruc tures  

N u m b e r  o f  N u m b e r  o f  
no.  s y m b o l  d iads  mi r ro r s  o b s e r v e d  ca lcu la ted  

Crystal class mram 
61 Pbca 0 0 1587 1644 
62 Pnma 0 1 526 449 
63 Cmcm 1 1 38 37 
64 Craca 1 0"5 51 71 
65 Cmmm 2 1.5 0 2 
66 Cccm 2 0.5 3 6 
67 Cmma 2 1 1 3 
68 Ccca 2 0 7 11 
69 Fmmm 1.5 0.75 1 15 
70 Fddd 1.5 0 12 39 
71 lmmm 1.5 1.5 0 6 
72 lbam 1.5 0.5 21 20 
73 lbca 1.5 0 4 39 
74 Irnma 1.5 1 4 11 

R 2 =0"133 
DF = 25 

Table 5. Coefficients of axes, planes and types of cell in regressions of Nsg in the crystal classes of the monoclinic 
and orthorhombic systems (estimated standard deviations in parentheses) 

Cell  coeff icients  
Crys ta l  Coeff ic ient  Coeff ic ient  Coeff ic ient  Coeff ic ient  

class [2] free [2] . . . .  [21 ]free [ m ] C I F 

2 -7 .04 - - 1.33 - - 
(0.71) (0.36) 

m . . . .  5.68 0.87 - - 
(0.46) (0.08) 

2 /m -6.48 - - -6.01 -0 .32 - - 
(0.22) (0.19) (0.11) 

222 -3.41 . . . .  0.89 -2.81 - 9  
(0.08) (0.15) (0.59) (10) 

tara2 -3 .08 -4.58 0.82 -2 .86 0-03 0.11 0.36 
(0"20) (0"25) (0"06) (0.16) (0-13) (0"20) (0' 12) 

mmm -3.63 -2 .94  -0 .57 -2 .36  -0 .90  -1 .07 -1-81 
(0.14) (0.12) (0.08) (0.13) (0.13) (0.21) (0.29) 

Note. The coefficient of  the 'free' centre of  symmetry in 2 /m is -1 .79 (e.s.d. 0.20) and in mmm is -1-81 (e.s.d. 0.20). 

is designed to deal with such 'variables', which are 
common in the social sciences, medicine and agricul- 
ture; they are called 'factors' having a number of 
'levels'. In the present case 'cell' is a factor with two 
levels in the monoclinic system and four in the ortho- 
rhombic system. It should be noticed that this is not 
equivalent to treating each type of cell as defining a 
new crystal class; the effects of each type of axis or 
each type of plane are still maintained within the 
crystal class, whatever the type of cell. 

The calculations of Tables 3 and 4 were therefore 
repeated (Tables 5 and 6), with free and encumbered 
axes distinguished and account taken of C, ! and F 
centring. The residuals were reduced to values within 
the usual range for structure refinement for all crystal 
classes, but there remained a few discrepancies >3t r  
for individual space groups in the centrosymmetric 
classes 2/m and mmm. These could be removed by 
distinguishing between the free centres of symmetry 
in space groups no. 14 (P2~/c) and no. 61 (Pbca)* 

* This  is equ iva l en t  to t rea t ing  these  space  g r o u p s  as sui generis, 

and  a l lowing  the  p r o g r a m  to  fit the  rest  o f  the  crystal  class as bes t  
it can.  The  c lose  a g r e e m e n t  b e t w e e n  the  coefficients  o f  the  free 
cent res  in the  two  space  g r o u p s  (see Tab le  5) m u s t  fo r  the  p resen t  
be  r e g a r d e d  as an  in te res t ing  co inc idence .  

and the centres encumbered by axes and /o r  planes 
in all other space groups in these classes. The progress 
of the refinement, as more features of the space-group 
symmetry are taken into account, can be followed in 
Table 7. 

The penalty for a more complex model is, of course, 
a decrease in the number of degrees of freedom, in 
the present case by one in 2 and m; by two in 2 /m;  
by three in 222; by five in mm2; and by six in mmm. 
For 2, in fact, the number of degrees of freedom is 
reduced to zero and the fit becomes perfect. 

5.2. The values of the parameters 

The values of the parameters for the second 
approximation are given in Table 5. Those for [2] 
and [m] remain of the same order of magnitude as 
in the first approximation, and the effect of [21 ]free is 
not great. That C centring has an independent effect 
in the monoclinic system seems well established; all 
values are greater than three times the program-esti- 
mated standard deviations. The effect of centring in 
the orthorhombic system is not so well established; 
three of the nine parameters are less than their 
program-estimated standard deviations, and a 
fourth is less than 30-. Nevertheless, omitting the 
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Table 6. Number of  structures attributed to each space group in the monoclinic and orthorhombic crystal systems 

The  ca l cu l a t ed  n u m b e r s  are b a s e d  on  the s e c o n d  a p p r o x i m a t i o n  (free a n d  e n c u m b e r e d  axes,  p l anes  a n d  type  o f  cell cons ide red ) .  For  
the  n u m b e r  o f  re f lex ion  p l anes  see T a b l e  4. 

Space  g r o u p  N u m b e r  of  d i ads  N u m b e r  of  s t ruc tu res  

Crystal class 2 
3 P2 1 0 2 2 
4 P21 0 1 2277 2277 R 2 = 0 
6 C2 0-5 0.5 255 255 D F = 0  

Crystal class m 
6 Pm 0 0 1 0 
7 Pc 0 0 122 122 
8 Cm 0 0 16 17 R 2 = 0.004 
9 Cc 0 0 294 294 DF = 1 

Crystal class 2 /m 
10 P2/m 1 0 0 0 
11 P2 t / m  0 1 198 198 
12 C 2 / m  0.5 0-5 114 113 
13 P2/c  1 0 124 124 
14 P21/c 0 1 13 518 13 518 R 2 = 0.0001 
15 C2/c  0"5 0-5 2291 2292 D F =  1 

Crystal class 222 
16 P222 3 0 3 0 
17 P2221 2 1 1 5 
18 P2t212 1 2 136 137 
19 P2t2t2 t 0 3 4128 4128 
20 C222 t 1 2 57 56 
21 C222 2 1 1 2 
22 F222 1"5 1"5 0 0 
23 I222 1"5 1"5 2 1 R 2 = 0-0012 
24 1212121 1"5 - 1"5 1 2 D F = 4  

Crystal class mm2 
25 Prom2 0 1 0 0 0 
26 Pmc21 0 0 0 16 16 
27 Pcc2 0 1 0 I 3 
28 Pma2 0 1 0 0 0 
29 Pca21 0 0 0 270 274 
30 Pnc2 0 1 0 3 3 
31 Pmn21 0 0 0 27 16 
32 Pba 2 1 0 0 10 13 
33 Pna21 0 0 1 620 621 
34 Pnn2 1 0 0 13 13 
35 Cram2 0 1 0 0 0 
36 Cmc2 0 0 0 61 68 
37 Ccc2 0 1 0 4 3 
38 C2mm 0 0.5 0 0 2 
39 C2mb 0 0.5 0 4 7 
40 C2cm 0 0.5 0 8 7 
41 C2cb 0 0.5 0 38 29 
42 Fmm2 0 0.5 0 5 10 
43 Fdd2 0.5 0 0.5 131 127 
44 lmrn2 0 0-5 0 1 2 
45 lba2 0 0.5 0 36 31 R 2 = 0.028 
46 Ima2 0 0.5 0 3 7 D F =  14 

Crystal class mmm 
47 Pmmm 0 3 0 0 0 
48 Pnnn 3 0 0 2 0 
49 Pccm 0 3 0 0 0 
50 Pban 1 2 0 1 1 
51 Pmma 0 2 0 0 0 
52 Pnna 1 1 I 21 8 
53 Pinna 0 2 0 5 3 
54 Pcca 1 1 0 9 14 
55 Pbam 1 0 0 7 24 
56 Pccn 0 1 2 129 165 
57 Pbcm 0 1 0 40 48 
58 Pnnm I 0 0 18 24 
59 Pmmn 0 1 0 7 5 
60 Pbcn 0 1 1 332 291 
61 Pbca 0 0 0 1587 1587 
62 Pn ma 0 0 1 526 518 
63 Cmcm 0 1 0 38 20 
64 Cmca 0 l 0 51 64 

N u m b e r  of  screw 
no.  s y m b o l  Free  E n c u m b e r e d  axes (free) obse rved  ca l cu l a t ed  
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Table 6 (cont.) 

N u m b e r  o f  structures 
Number  o f  screw 

no. symbol  Free Encumbered  axes (free) observed calculated 
Crystal class mmm 

65 Cmmm 0 2 0 0 0 
66 Cccm 0 2 0 3 3 
67 Cmma 0 2 0 1 1 
68 Ccca 0 2 0 7 11 
69 Fmmm 0 1.5 0 1 7 
70 Fddd 1.5 0 1-5 12 6 
71 lmmra 0 1.5 0 0 1 
72 lbam 0 1.5 0 21 6 
73 lbca 0 1.5 0 4 20 
74 lmma 0 1"5 0 4 2 

R 2 = 0.040 
DF = 19 

Table 7. The progress of  refinement, giving the values of  R 2 for each crystal class as more features of  the 
symmetry are taken into account 

The number  o f  degrees o f  f reedom remaining at each stage is given in parentheses.  

Symmetry  features 
accounted  for 

2 

Axes and planes 0.0170 (1) 
Free and encumbered axes distinguished 
Cells P, C, I and F distinguished 0.0000 (0) 
Free and encumbered centres distinguished 

Value o f  R 2 for the crystal class indicated 
m 2 / m  222 m m 2  m m m  

0.3816 (2) 0.0294 (3) 0.0155 (7) 0-3758 (19) 0.1332 (25) 
- - - 0.0470(17) 0.1131 (23) 

0.0043 (1) 0.0115 (2) 0.0012 (4) 0-0283 (14) 0.0989 (20) 
- 0.0001 (1) - - 0.0402 (19) 

nonsignificant coefficients markedly worsens the fit. 
The aberrantly large effect of F in 222 depends on a 
single space group of observed frequency zero. Any 
large negative value of the coefficient will suffice to 
give agreement between the observed and the calcu- 
lated values; that the program has decided on - 9  + 10 
is of no particular significance. One may perhaps 
conclude that (i) in 222 and mmm any type of centring 
reduces the popularity of the space group, and (ii) 
in mm2 F centring increases the popularity of the 
space group. 

5.3. Comparison of  observed and calculated frequencies 

The observed numbers of structures in the space 
groups of the monoclinic and orthorhombic systems 
are given in Table 6, together with the values calcu- 
lated from the second approximation. There are very 
considerable improvements over the first approxima- 
tion given in Table 4. The fits for m, 2/m, 222 and 
ram2 are uncanny; that for mmm is not bad. 

It would be possible to refine the model further. 
One could distinguish between different types of 
interference between axes and planes; there are about 
enough of them to give perfect fit (as in crystal class 
2) for every space group in ram2 and mmm. Possibly 
one should distinguish between free and encumbered 
planes; does the coincidence of a plane and an axis 
affect the effect of the plane as well as that of the 
axis? When a reflexion plane and a glide plane 
coincide [as happens in the space groups of type 
C2- -  (nos. 38 to 41) in the crystal class ram], should 

they be counted independently (as was in fact done 
in Tables 2 to 6), or does one overwrite the effect of 
the other, partially or entirely? 

Similar attempts at modelling the partition of struc- 
tures among the space groups of the tetragonal, 
trigonal, hexagonal and cubic crystal classes are 
under way. It may be remarked, however, that all 
these remaining crystal classes contain only 3.5% of 
the 'restricted set' of structures defined in § 1 above. 

I am indebted to Professor Theo Hahn for help in 
the understanding of symmetry elements and of their 
representation in Volume A of International Tables 
for Crystallography, and to Dr Frank Allen, to Dr 
Sharon Bellard and to Dr David Watson for making 
available programs for carrying out the searches 
necessary for this work. I am indebted to Dr Simon 
French for helpful correspondence on Bayesian 
estimation. 

APPENDIX 

Estimation of binomial variance 

If the probability of a 'success' (in the present context, 
the occurrence of an example of a particular space 
group in a crystal class) is p, the expected number of 
successes in a sample of size N is Np with variance 
N p ( 1 - p ) .  The probability p is, however, unknown, 
and must be estimated from the observed number of 
successes, n. The naive expectations, the maximum- 
likelihood estimates, and the classical Bayesian 
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estimates of  p and the variance of n are all n / N  
and n(1 - n~ N )  respectively (Kendal l  & Stuart, 1977, 
§ 8.8; 1979, § 19.29). If  n and N - n  are both large 
no problem arises, but if  one is small or zero these 
estimates are unreasonable .  In particular,  i f  n = 0 the 
estimate that p = 0 with perfect certainty (variance 
zero) is unacceptable.  For example,  if  N = 100, p = 
0-01, the probabi l i ty  of  observing n = 0 is practically 
equal to the probabi l i ty  of  observing the expected 
value n = 1; both are 0.36 . . . .  If  one treats the likeli- 
hood funct ion as a probabi l i ty  distr ibution and 
calculates the mean-l ikel ihood (instead of the 
maximum-l ike l ihood)  values, one obtains the more 
reasonable estimates 

( p ) = ( n + l ) / ( N + 2 )  (A1) 

(the Laplace 'rule of  succession') ,  and 

tr2(n) = N [ ( n +  1 ) / ( N  + 2 ) ] [ 1 - ( n +  2 ) / ( N  + 3)]. 
(A2) 

These lead to reasonable  values for n = 0: 

( n ) =  1 / ( N  + 2)--= N - ' ,  (A3) 

t r Z ( n ) = N ( N + I ) / ( N + Z ) ( N + 3 ) ~ - I .  (A4) 

Various neo-Bayesian estimates (Good, 1965) give 
expressions s imilar  to (A1) and (A2), with different 
numerical  values for the 'corrections'  to n and N. 

Recalculat ion of  many  of  the values of Nsg in Tables 
4 and 6 with variance given by (A2) instead of  the 

G L I M  default  value gave only minor  changes,  usual ly 
in the direction of better agreement. For most space 
groups in the monocl in ic  and or thorhombic  systems 
Nsg is not small,  and the choice of the expression for 
the variance may be more important  for the remaining  
systems. 
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Abstract  

On the basis of  a generalized symmetry m i n i m u m  
function several computer-oriented methods for 
interpreting Patterson functions and for locating the 
position of  heavy-atom fragments in crystals belong- 
ing to space groups of  higher  symmetry than P1 have 
been developed. The methods utilize cross vectors for 
finding relat ionships among the peaks of  the sym- 
metry m i n i m u m  function. This approach has the 
advantage of  suppressing false peaks of the symmetry 

m i n i m u m  function,  in locating more than one atom 
and in revealing the correct solution with greater 
probabili ty.  The heavy-atom fragment can be exten- 
ded by superposi t ion or Fourier methods.  The 
methods are valid for all space groups, are s imple to 
apply and form the basis for fully automated structure 
determination.  In contrast to many other Patterson 
methods no a priori structural informat ion is 
necessary. A few selected examples  demonstrate  the 
power of  the new version of the computer  program 
XFPS. 
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